skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boriboonsomsin, Kanok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many cities across the world are looking to use technology and innovation to improve the overall efficiency and safety for their residents. At the heart of these smart-city plans, a variety of intelligent transportation system technologies can be used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize environmental impacts of a city’s mobility ecosystem. Early implementations of these ITS technologies often take place in affluent cities, where there are many funding opportunities and suitable areas for deployment. However, it is critical that we also develop smart city solutions that are focused on improving conditions of disadvantaged and environmental justice communities, whose residents have suffered the most from unmitigated urban sprawl and its environmental and health impacts. As a leading example, Inland Southern California has grown to be one of the largest hubs of goods movement in the world. Numerous logistics facilities such as warehouses, rail facilities, and truck depots have rapidly spread throughout these communities, with the local residents bearing a disproportionate burden of truck traffic, poor air quality, and adverse health effects. Further, the majority of residents have lower-wage jobs and very few mobility options, other than low-end personal car ownership. To improve this situation, UC Riverside researchers have focused their smart city research on these impacted communities, finding innovative solutions to eco-friendly traffic management, developing better-shared (electric) mobility solutions for the community, improving freight movements, and enhancing the transition to vehicle electrification. Numerous research and development projects are currently underway in Inland Southern California, spanning advanced smart city modeling and impact analysis, community outreach events, and real-world technology demonstrations. This chapter describes several of these ITS solutions and their potential for improving many cities around the world. 
    more » « less
    Free, publicly-accessible full text available December 22, 2025
  2. The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspective, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental impacts while maintaining economic efficiency. 
    more » « less
  3. The emergence of battery electric trucks (BETs) in recent years has shown great promise in reducing greenhouse gas (GHG) emissions in urban freight logistics. However, designing a customer-oriented dispatching strategy for a BET fleet is more complex than traditional vehicle routing problems (VRP) due to several constraints, such as limited driving range, potential need for en route recharging, and long recharging times. Also, in practice, the uncertain travel times in urban transportation network may lead to the violation of scheduled customer time windows and impact overall energy consumption. To better utilize the BET fleet, this paper introduces a robust BET dispatching problem with backhauls and time windows under travel time uncertainty, which aims to minimize the overall fleet energy consumption while also minimizing the risk of violating customer time window. A mathematical optimization model based on novel route-related sets is developed, and an adaptive large neighborhood search (ALNS) metaheuristic algorithm is used to find robust dispatching solutions. Based on real-world data from a truck fleet in San Bernardino County, California, a simulation study is conducted to demonstrate the robustness of the solutions obtained by the proposed method. Moreover, a sensitivity analysis with respect to uncertainty parameters is performed to assess the trade-off between the overall fleet energy consumption and the robustness of the solutions. 
    more » « less
  4. Connected vehicle-based eco-driving applications have emerged as effective tools for improving energy efficiency and environmental sustainability in the transportation system. Previous research mainly focused on vehicle-level or link-level technology development and assessment using real-world field tests or traffic microsimulation models. There is still high uncertainty in understanding and predicting the impact of these connected eco-driving applications when they are implemented on a large scale. In this paper, a computationally efficient and practically feasible methodology is proposed to estimate the potential energy savings from one eco-driving application for heavy-duty trucks named Eco-Approach and Departure (EAD). The proposed methodology enables corridor-level or road network–level energy saving estimates using only road length, speed limit, and travel time at each intersection as inputs. This technique was validated using EAD performance data from traffic microsimulation models of four trucking corridors in Carson, California; the estimates of energy savings using the proposed methodology were around 1% average error. The validated models were subsequently applied to estimate potential energy savings from EAD along truck routes in Carson. The results show that the potential energy savings vary by corridor, ranging from 1% to 25% with an average of 14%. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging. We formulate the problem as a mixed-integer linear programming model and propose an algorithm that combines adaptive large neighborhood search and simulated annealing metaheuristics to solve it. The effectiveness of the proposed strategy is demonstrated through extensive experiments using a real-world case study from a logistics company in Southern California. The results indicate that the proposed strategy leads to a significant reduction in total energy consumption compared to the baseline strategy, ranging from 11% to 40%, while maintaining reasonable computational time. In addition, the proposed strategy provides solutions that are better than or comparable with those obtained by other metaheuristics. This research contributes to the development of sustainable transportation solutions in the freight sector by providing a novel approach for dispatching BET fleets. The findings emphasize the potential of deploying BETs to achieve energy savings and advance the goal of green logistics. 
    more » « less
  6. California has set a goal for all drayage trucks operating in the state to be zero-emitting by 2035. In order to achieve this goal, drayage operators would need to transition 100% of their Heets to zero-emission vehicles such as battery electric trucks (BETs). This article presents an intelligently controlled charging model for BETs that minimizes charging costs while optimizing subsequent tour completion. To develop this model, real-world activity data from a drayage truck Heet operating in Southern California was combined with a two-stage clustering technique to identify trip and tour patterns. The energy consumption for each trip and tour was then simulated for BETs with a battery capacity of 565 kWh using a 150 kW charging power level. Home base charging load profiles were generated using the proposed charging model, subject to constraints of the energy needed to complete the next subsequent tour and Time-of-Use energy cost rates. A sensitivity analysis evaluated three scenarios: a passive scenario with a 5% state-of-charge (SOC) constraint after completing the subsequent tour, an average scenario with a 50% SOC constraint, and an aggressive scenario with an 80% SOC constraint. Results indicated that the 80% SOC constraint scenario achieved the lowest charging cost. However, it also yielded the lowest tour completion rate (51%). In contrast, the 5% SOC constraint scenario registered the highest tour completion rate. These results revealed that 96% of the tours could be successfully completed using the intelligently controlled charging model. The remaining tours were infeasible, indicating that the available time at the home base was inadequate for charging the necessary energy for the next tour. In terms of total costs, the scenario with a 5% SOC constraint resulted in an annual cost of approximately $40,000, whereas the 80% SOC scenario nearly doubled that amount. 
    more » « less
  7. Efforts to decarbonize the heavy-duty vehicle sector have generated vast interest in transitioning from conventional diesel trucks to battery electric trucks (BETs). As a result, understanding energy consumption characteristics of BETs has become important for a variety of applications, for instance, assessing the feasibility of deploying BETs in place of conventional diesel trucks, predicting the state-of-charge (SOC) of BETs after specific duty cycles, and managing BET charging needs at the home base or en-route. For these applications, mesoscopic energy consumption models offer a good balance between the amount and fidelity of the input data needed, such as average traffic speed and road grade on a link-by-link basis, and the model performance. As a common intelligent transportation system (ITS) application, this paper presents a comparative assessment of mesoscopic energy consumption models for BETs developed using three different machine learning techniques. The results show that the random forest (RF) regression outperforms the extreme gradient boosting (XGBoost), the light gradient boosting machine (LightGBM), as well as the conventional linear regression as evidenced by the resulting model having a higher coefficient of determination (R2) value than that of its counterparts. When applied to the simulated dataset, the RF regression can capture the behaviors of BET energy consumption well where the R2 value of the resulting model is 0.94. 
    more » « less
  8. Even though heavy-duty battery electric trucks (BETs) have become commercially available, their range limitation still hinders widespread adoption. Drayage has been regarded as a suitable application for early BETs due to typically having limited daily mileage. However, drayage operation can vary widely and some form of range extension may still be needed for BETs operating in this application. In this paper, wireless charging at port terminals is proposed for this purpose. Potential wireless charging zones at port terminals are identified, and efficacy of wireless charging to extend BET range in drayage operation is verified by simulating the activity of20 BETs from a drayage operator serving the ports of Los Angeles and Long Beach, using a microscopic BET energy consumption model. Furthermore, an optimization problem is formulated for optimal wireless charging zone planning from the port authority's perspective, considering subsets of the identified zones, and charging power options to choose from, for different budget ranges. In this context, zone planning means determining which areas of the port terminals should be selected for installing wireless charging systems, and what level of charging power should be for each selected zone's system. For each budget range, the optimization problem is solved using genetic algorithm to determine an optimal zone plan that provides the maximum amount of energy through wireless charging per unit cost of installation. The results show that wireless charging can aid improving activity completion of the simulated fleet by 5%, and further optimizing the zone plan can achieve similar performance with lower cost. 
    more » « less
  9. Urban air quality and the impact of mobile source pollutants on human health are of increasing concern in transportation studies. Existing research often focuses on reducing traffic congestion and carbon footprints, but there's a notable gap in understanding the health impacts of traffic from an environmentally-just perspective. Addressing this, our paper introduces an integrated simulation platform that models not only traffic-related air quality but also the direct health implications at a microscopic level. This platform integrates five modules: SUMO for traffic modeling, MOVES for emissions modeling, a 3D grid-based dispersion model, a Matlab-based visualizer for pollutant concentrations, and a human exposure model. We emphasize the transportation-health pathway, examining how different mobility strategies impact human health. Our case study on multimodal on-demand services demonstrates that a distributed pickup strategy can reduce cancer risk from PM 2 . 5 exposure by 33.4% compared to centralized pickup. This platform offers insights into traffic-related air quality and health impacts, providing valuable data for improving transportation systems and strategies with a focus on health outcomes. 
    more » « less
  10. The emerging prevalence of electric vehicles (EVs) in shared mobility services has led to a groundbreaking trend for decarbonizing the shared mobility sector. However, it is still unclear how to maximize the efficiency of EVs to reduce greenhouse gas (GHG) emissions while maintaining high service quality, particularly considering the ongoing transition towards a fully electrified service fleet. In this paper, focusing on meal delivery, we proposed an eco-friendly on-demand meal delivery (ODMD) system to maximize the utilities of EVs to mitigate GHG emissions and maintain low operational cost and delay cost. The main feature of our system is that its fleet consists of electric and gasoline vehicles mirroring the evolving electrification trend in the shared delivery sector. A rolling horizon framework integrated with the adaptive large neighborhood search (RHALNS) algorithm was proposed to efficiently solve the meal order dispatching and routing problem with the mixed fleet. Three delivery policies were explored in the numerical study. Experiment results demonstrated that it is necessary for online meal delivery platforms to actively collect information of electric vehicles and take initiative to employ an eco-friendly delivery policy. 
    more » « less